본문 바로가기
반응형

ai 공정성3

455. AI를 정말 ‘검증’할 수 있을까: XAI의 약속, 한계, 그리고 신뢰의 조건 AI를 정말 ‘검증’할 수 있을까: XAI의 약속, 한계, 그리고 신뢰의 조건 서론인공지능(AI)을 실제 업무와 서비스에 투입하려는 기업과 기관이 빠르게 늘어나고 있습니다. 그러나 “이 모델을 믿어도 되는가?”라는 질문 앞에서 많은 조직이 망설입니다. 특히 블랙박스 모델이라 불리는 딥러닝 계열 모델은 입력과 출력은 알 수 있지만, 그 내부 과정을 설명하지 못합니다. 즉, 어떤 데이터가 들어가면 어떤 결과가 나온다는 사실은 확인할 수 있어도, 왜 그런 결론에 이르렀는지는 여전히 미스터리입니다. 설명이 불가능하다면 검증도 어렵고, 검증이 어렵다면 신뢰 역시 구축되지 않습니다. 이 문제의식에서 등장한 개념이 설명가능한 AI(XAI, Explainable AI)입니다. XAI는 모델이 내린 결정을 사람에게 이해.. 2025. 10. 2.
453. Bias 없는 AI는 가능할까? 편향 제거의 한계와 관리 전략 Bias 없는 AI는 가능할까? 편향 제거의 한계와 관리 전략 서론인공지능(AI)은 점점 더 많은 의사결정 과정에 사용되고 있습니다. 채용, 대출 심사, 의료 진단, 범죄 예측 등 중요한 영역에서 AI의 판단은 사회적 영향을 크게 미칩니다. 그러나 그 과정에서 '편향(bias)' 문제가 반복적으로 드러나고 있습니다. 특정 집단에 불리하게 작동하는 AI는 사회적 신뢰를 잃게 되며, 이를 바로잡기 위한 연구와 제도적 논의가 활발히 이어지고 있습니다. 2023년 MIT Sloan Management Review 기사에서는 "AI는 본질적으로 역사적 데이터에서 학습하기 때문에 편향을 완전히 없애는 것은 불가능하다"고 설명했습니다. 쉽게 말해, AI가 배우는 데이터 자체가 사회 속에 존재하는 편향을 담고 있기 때.. 2025. 9. 26.
450. 알고리즘이 전부라고? AI 성공 좌우하는 건 결국 데이터 알고리즘이 전부라고? AI 성공 좌우하는 건 결국 데이터 요약고도화된 알고리즘보다 데이터 품질과 데이터 중심(Data-Centric) AI가 성능과 비즈니스 성과를 좌우합니다. 왜 그런지, 무엇을 바꿔야 하는지, 최신 연구와 실제 기업 사례, 실무 체크리스트로 확장 설명합니다. 서론Claim: “좋은 알고리즘이면 성능은 따라온다”는 믿음은 반쪽 진실입니다. 실제 현장에서는 정확성·완전성·일관성 같은 데이터 품질이 알고리즘 선택 못지않게, 때로는 그보다 더 크게 모델 성능을 좌우합니다. Evidence: 최신 연구에 따르면, 전체 ML 파이프라인 노력의 45%~90%가 데이터 준비(수집·정제·검증·통합)에 투입된다고 보고되었습니다. 데이터가 편향되거나 누락·오염되어 있으면, 고급 모델도 그대로 그 한계를 .. 2025. 9. 17.
반응형

TOP

Designed by 티스토리